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An investigation of the behavior of shock capturing schemes which compute the numerical 
flux from a solution of Riemann’s problem is performed. The schemes of Godunov, Roe, and 
Osher are examined for a one-dimensional model problem consisting of a nearly stationary 
shock. Both scalar and systems of equations are examined. It is found that for slow shocks 
there is a significant error generated when solving systems of equations, while the scalar 
results are well behaved. This error consists of a long wavelength noise in the downstream 
running wave families that is not effectively damped by the dissipation of the scheme. The 
source of this error is shown, and the implications for the performance of these schemes are 
considered. This error may contribute to the slow convergence to steady state reported by 
many researchers. _ C_l 1990 Academic Press. Inc. 

1. IN~~DUCTION 

Recent years have seen tremendous progress in the development of numerical 
methods for solving the equations governing the unsteady flow of an inviscid, 
adiabatic ideal gas-the Euler equations. The difficulty in the numerical solution of 
the Euler equations arises primarily from their nonlinearity, in particular the 
mechanism that allows the formation of shocks. The most active area of research 
recently has been in the development of so-called “upwind” difference schemes; a 
general overview of such methods can be found in the review by Roe [ 11. A recent 
survey by Woodward and Colella [2] compares a variety of methods for the 
computation of unsteady flows with strong shocks. Their results show that, at least 
for a particular class of higher order upwind schemes, significant improvements in 
accuracy and efficiency are obtained over conventional artificial viscosity methods. 
The type of upwind schemes that they consider are referred to as “flux difference 
splitting” schemes. These are also referred to as “Godunov-type” schemes, as the 
method of Godunov [3] is the original flux difference splitting scheme. These 
schemes have in common that the numerical flux is computed from either an exact 
or approximate solution of Riemann’s problem at cell intefaces. Second-order 
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accuracy or better is obtained by a nonlinear interpolation of either the fluxes or 
the dependent variables; the philosophy behind this approach is outlined by Roe 
[l] and Woodward and Colella [2]. 

The results shown by Woodward and Colella point out a source of error behind 
a shock that is nearly stationary, which occurs when using Godunov’s method. 
Numerical noise is generated in the discrete shock transition layer and is 
transported downstream. The results in [2] illustrate that this, error can have a 
significant global influence on the accuracy of the results. In addition, they show 
[4,2] that the source of this error is found in the first-order accurate version of 
Godunov’s scheme and is not due to the interpolation procedure used to obtain 
higher order accuracy. 

It is the object of this paper to examine the source of this error by considering 
three first-order accurate flux difference splitting schemes. A comparison of 
Godunov’s [3], Roe’s [S], and Osher’s [6] upwind schemes is made for a one- 
dimensional flow consisting of a slowly moving shock wave. (“Slowly moving” 
means that the ratio of the shock speed to the maximum wave speed in the domain 
is e 1.) In their own high-order PPM method, Colella and Woodward [4] discuss 
the error in some detail and give a heuristic explanation of it. They also present 
additional numerical dissipation terms to damp it. It will be shown below that their 
explanation of the error is incomplete and that different schemes (i.e., different 
numerical flux formulas) have significantly different levels of this noise. This error 
is inherent to nonlinear systems of equations; solutions for scalar conservation laws 
are perfectly well behaved. It will also be pointed out that the use of total variation 
diminishing (TVD) concepts in the construction of higher order schemes accen- 
tuates the problem. 

Although the present work is motivated by the author’s interest in computing 
unsteady flows, this study may also have implications for steady flow computations. 
The interest in upwind schemes for steady flows is due to their extremely good 
resolution of steady shocks. These flux difference splitting algorithms are being used 
to compute steady flows in a time asymptotic fashion. The rate of convergence to 
the steady state is dominated by the slow propagation of the shocks to their equi- 
librium positions. Typically, higher order flux difference splitting schemes converge 
very slowly to the steady state, as reported by Lytton [7] and Yee [8], for 
example. (The author has also had this same experience with two-dimensional 
steady transonic calculations.) The error behind slow shocks examined here may be 
a contributing factor to this slow convergence. 

The rest of the paper is organized as follows. In the next section, the equations 
of motion and the model problem are described. In Section 3, the three flux 
difference splitting methods are described. Results are presented in Section 4, and in 
Section 5 the observed behavior is explained in terms of the discrete shock 
structure. The paper is then summarized in the concluding section. 
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2. EQUATIONS AND MODEL PROBLEM 

The flux difference splitting schemes mentioned above were compared for three 
sets of equations: the inviscid Burgers equation, 

1 
u,+ -L42 

( > 2 .Y 
= 0; 

the Euler equations for an isothermal gas, 

Pr + CPU)., = 0, 

(WI, + Mu2 + a’))., = 0, 
(2) 

where p is the density, u is the velocity, and a is the speed of sound, a constant; 
and the full Euler equations for an ideal gas with constant specific heats, 

where p is the pressure, E = u2/2 +p/((y - 1)~) is the specific total energy, and y is 
the specific heats ratio. 

All the above equations are hyperbolic conservation laws, and may be written in 
the form 

dU dF(U)=O 
x+- dx ’ (4) 

where U is the state vector of the conserved variables and F(U) is the flux function. 
For the purpose of discussing the schemes under consideration in the next section, 
Eq. (4) is the most convenient form of the equations. 

The model problem is shown in Fig. 1. Each equation was solved for a flow 
consisting of a single shock wave propagating slowly to the left. The initial 
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FIG. I. Model problem for flux difference splitting. 
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conditions for each case consisted of two constant states separated by the exact 
shock jump at the midpoint of a domain of 100 cells. The states were chosen to give 
a ratio of the shock speed to the maximum eigenvalue of the system of about 150. 
In other words, at a Courant number of 1, the shock would traverse a single cell 
in approximately 50 time steps. All cases shown below were computed for a 
Courant number of 0.95; the results were insensitive to changes in this parameter. 

The left (inflow) boundary was supersonic, so all flow variables were specified 
there. At the right (outflow) boundary, there was always one characteristic entering 
the domain. The appropriate characteristic variable was specified; its value was 
given by the exact postshock conditions. All remaining characteristic quantities 
were extrapolated. 

3. NUMERICAL METHODS 

The equations presented in the previous section were solved using first order 
accurate versions of Godunov’s [3]. Roe’s [S], and Osher’s [6] methods. All these 
schemes for solving Eq. (4) can be written in the form 

where j and n are the spatial and time level indices, and @J’+ 1,2 is the numerical flux 
function at the interface between cells j and j + 1 at time level n. Depending on the 
choice of the numerical flux formula, Eq. (5) is referred to as Godunov’s, Roe’s, or 
Osher’s, scheme. All three schemes are stable for a Courant number d 1. 

The schemes considered here compute the numerical flux fly+ riz from either an 
exact or approximate solution of the Riemann problem at cell interfaces. How this 
is done is now described for each of the three schemes. 

3.1. Godunov’s Scheme 

Godunov [3] first proposed the use of the Riemann problem for computing the 
numerical flux function in Eq. (5). If at time t = 0, the flow consists of two constant 
states 

U(x<O, l=o)=uL, U(x>O, t=O)=UR, 

there exists a solution consisting of K nonlinear waves, where K is the number of 
equations in the system. This is shown schematically in Fig. 2 for the Euler 
equations (3). The solution is self-similar; U is a function only of 9 = x/t. For the 
equations of gasdynamics, a unique solution always exists as long as a vacuum does 
not form (see Chapter 18 of Smoller [9]). 

Godunov uses the Riemann problem to compute the flux in the following way. 
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rarefaction 1 t contact. 

FIG. 2. Riemann problem for the Euler equations. 

For the interface between cells i and j+ 1, he solves the Riemann problem with 
uL=u;, u,=u;+,. The flux is then given by the state at v = 0, i.e., 

E=F(U(q=O)). 

This flux may be written in the following way: define 

dF+ =FR-F(U(q=O)), AF- = -F.+F(U(q=O)), 

which gives AF = F,- F, =dF+ + AF-. One can think of AF’ as being the 
contributions to AF due to the right and left running waves at the interface, 
respectively. The flux may then be written as 

E=;(F,+F,)-#F+ -do- ). (6) 

It is this form of the flux funtion that gives rise to the term “flux difference 
splitting.” Both Roe’s and Osher’s schemes, presented below, may be written in this 
form. 

One disadvantage of Godunov’s flux formula is that the Riemann problem leads 
to a set of nonlinear algebraic equations which must be solved iteratively. Both 
Roe’s and Osher’s schemes are designed to overcome this problem by making use 
of approximations to the solution of Riemann’s problem that result in explicit, 
noniterative expressions for the flux function in Eq. (5). These methods are now 
discussed. 

3.2. Roe’s Scheme 

Roe [S] approximately solves the Riemann problem for two adjacent states, U,, 
UR, by finding a mean Jacobian matrix i(U,, U,) that satisfies the identity, 

AF=AAU, (7) 

where A( ) = ( )R - ( )L. Roe requires A to have a complete set of eigenvalues and 
right eigenvectors and to satisfy A(U, U) = BF/dU (i.e., it reduces to the exact 
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Jacobian when U, = U,). He refers to these requirements collectively as 
“Property U.” 

Let XCk’, Fk’, and u(k) be the kth eigenvalue, right eigenvector, and inner product 
of the left eigenvector with AU, respectively. Equation (7) can be rewritten in terms 
of these quantities, 

K 

AF = C ?WXWa(k), 

k=l 

where K is the number of equations. Because of the identity Eq. (7), this expression 
for the flux difference is exact when the left and right states are connected by a 
discontinuity satisfying the Rankine-Hugoniot jump conditions. In that case, AU 
projects onto the appropriate right eigenvector r -(k) of A. Thus 8) = 0, i # k, and the 
speed of the discontinuity is equal to the corresponding eigenvalue Xck’. 

A first-order accurate Riemann flux at the interface between cells R and L is 
given by 

E=$(F,+F,)-; F f(k) IJ(Wl aW’, 
k=l 

The expressions for Xtk’, Ftk), and atk) for Eq. (3) have been given by Roe [ST]. The 
corresponding expressions for the isothermal Euler equations (2) are given in 
Appendix A. 

3.3. Osher’s Scheme 

Osher’s [6] approach to the Riemann problem is to consider the problem in the 
state space rather than the physical space. The flux difference between the left and 
the right states may be written 

where the integral is evaluated along an arbitrary path r in the state space. 
Assume the eigenvalues of cYF/dU are ordered from smallest to largest, i.e., 
A”‘<AQ)< . . < 1(k) Osher chooses a particular path from U, to U, that consists . 
of a K-simple wave, followed by a (K - 1 )-simple wave, and so on to l-simple wave. 
This wave path is uniquely determined by the left and right states. If we take daCk’ 
to be the inner product of the kth left eigenvector of dF/cXJ with &J, then along 
a k-simple wave, da(‘) = 0, i # k. The path integral for AF = F, - F, may be written 

where rCk’ and ACk) are the kth right eigenvector and eigenvalue, respectively, and 
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Pk’ is that portion of the path along the k-simple wave. Osher’s first-order accurate 
numerical flux is 

Note the formal similarity between Eqs. (8) and (10). 
The evaluation of Eq. (10) requires knowledge only of the states connecting the 

Pk’ and TCk + ” subpaths, and of any sonic states that occur along each subpath. 
For the Euler equations, these states can be computed explicitly from knowledge of 
the left and right states, so that no iterations are required. In Osher and Solomon 
[6], formulas for these intermediate states are given for the Euler equations (3). 
Expressions for the intermediate states for the isothermal Euler equations (2) are 
presented in Appendix B. 

4. RESULTS 

Solutions for the model problem described in Section 2 are shown below. In all 
cases, the solutions are shown after approximately 2000 time steps, after which the 
shock has crossed about 40 cells. 

The solution to Burgers equation can be seen in Fig. 3. Since there are no rare- 
factions, Roe’s scheme is identical to Godunov’s scheme for this problem. Osher’s 
scheme reduces to the Engquist-Osher scheme for scalar equations. There is not 
much to be said, other than to note that both solutions behave as expected. The 
shock profiles are monotone. Roe’s (Godunov’s) scheme gives a shock with a single 
internal zone, while Engquist-Osher gives a two-zone shock. 

More interesting results are obtained for the isothermal Euler equations (2). The 
left and right states have been chosen to give about an order of magnitude pressure 
rise across the shock. Solutions obtained using Roe’s and Osher’s schemes are 
compared in Fig. 4. The plots show the Riemann invariants of the equations, 
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FIG. 3. Burgers equation solution: Roe’s/Godunov’s (left); Engquist-Osher (right). 



148 THOMAS W. ROBERTS 

R- 0.0 

-3.0 - 

Inp t u/a 
3.0 

2.0 

R+ 2.6 

--... - I 
2.4 . 

2.2. 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 

I z 

FIG. 4. Isothermal Euler equations: Roe’s scheme (left); Osher’s scheme (right). 

1.0 

(In p f u/a), associated with the u f a characteristics, respectively. The (In p - U/U) 
invariant is a characteristic variable belonging to the shock family and behaves 
qualitatively in the same way as the solution of Burgers equations. Both schemes 
have monotone profiles in this invariant. However, in the downstream running 
wave family, represented by the (In p + u/a) invariant, there is a smooth, long 
wavelength error behind the shock. The wavelength of this error is - 15 Ax. This 

Inp- uJn In p t II/lx 

3.0 3.0 

2.8 

0.0 2.6 

--...- 
2.4 - . 

-3.0 - 2.2 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

z z 

FIG. 5. Isothermal Euler equations, Godunov’s scheme. 
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corresponds very nearly to the value of (U + a) Ax/s behind the shock, where s is the 
shock speed, for the parameters of this problem. The wavelength and amplitude are 
insensitive to changes of the Courant number. The error is particularly pronounced 
for Roe’s scheme. Although the error is also present in Osher’s scheme, it is small 
enough to be negligible. Because the error has such a long wavelength it is only 
slowly damped by the dissipation of the scheme, even though the method is only 
first-order accurate. 

The solution to this problem using Godunov’s method is shown in Fig. 5. These 
results are virtually indistinguishable from those obtained using Roe’s scheme. This 

C (Ap - @Au) / (25’) 

C (A/J - Aplfi’) 

C (Ap t /kiAr) / (‘h?) 

0.0 0.2 0.4 0.6 0.6 1.0 0.0 0.2 0.4 0.6 0.6 1.0 

2 I 

FIG. 6. Full Euler equations: Roe’s scheme (left); Osher’s scheme (right). 
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is expected, since the differences in Roe’s approximate Riemann solver and an exact 
Riemann solver are small near a shock (and vanish completely if the jump condi- 
tions are satisfied across two cells). 

For the full Euler equations, as for the isothermal equations, the left and right 
states have been chosen to give about a one order of magnitude pressure rise acorss 
the shock (a shock Mach number M,Y = 3). For this system of equations, we no 
longer have the integrability conditions along the characteristics that give us 
Riemann invariants as in the isothermal case. To plot the results, we need some 
other measure of the wave strengths. Roe’s linearization at cell interfaces provides 
us with a convenient choice: 

where the summation is from 0 to j. This is a discrete analog of integrating the 
characteristic variables from the inlet to cell j and remains valid across shocks. This 
allows us to decouple the wave families for plotting purposes. In the results shown 
in Fig. 6 we can see, as in the isothermal case, that the wave family associated with 
the shock is monotone, but there is again a long wavelength noise behind the shock 
in the downstream running waves (the u and u + a families). The amplitude of the 
error is largest in the entropy wave, but the wavelength of the error is much longer 
in the acoustic wave. As with the isothermal equations, the observed wavelengths 
of the errors in the entropy and acoustic waves correspond quite well to u Ax/s and 
(U + a) Ax/s, respectively. Once again we see that the amplitude of the noise is 
hardly noticeable for Osher’s scheme, while the error is a few percent of the 
postshock density with Roe’s scheme. The results obtained with Godunov’s scheme 
are not shown; as with the isothermal Euler equations, they scarcely differ from the 
results given by Roe’s scheme. 

5. DISCUSSION 

From the results shown in Section 4, it is seen that there is a source of numerical 
error that occurs when computing nearly stagnant shocks using flux difference 
splitting methods. This error has been observed and discussed previously by Colella 
and Woodward [4,2] in the context of extremely strong (pressure ratios ‘5 lo5 or 
greater) shocks. However, the results shown above were for much weaker shocks, 
and the author has observed this phenomenon even for transonic (pressure ratio 
Y 1.2) shocks. It is also important to note that the error only occurs with nonlinear 
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systems of equations. Shocks for the scalar inviscid Burgers equation (I) are 
perfectly well behaved. 

In [4], Colella and Woodward discuss this problem in some detail for 
Godunov’s scheme. Their explanation boils down to this: the dissipation in this 
method scales as the eigenvalue (wave speed) of the appropriate characteristic field. 
At a slowly moving shock, the dissipation for the characteristic variable that jumps 
across the shock necessarily becomes very small. Thus, the shock transition layer is 
too thin, in the sense that there is insufficient dissipation to ensure the correct 
entropy production in the shock. From this argument, they conclude that 
additional dissipation must be added to the scheme at a shock. They go on to 
present several artificial viscosity models to alleviate the problem. 

The problem with Colella and Woodward’s explanation is that it does not 
explain why scalar equations are well behaved, since the dissipation at a slow shock 
is small in that case as well. Furthermore, the noise seen with systems of equations 
shows up in the downstream running waves, for which the dissipation does not 
vanish; the characteristic variable associated with the shock has monotone 
behavior. Following a line of reasoning suggested by P. L. Roe (private 
communication), the error can be explained in terms of the discrete shock structure. 

First consider Roe’s scheme, since the idea can be explained most easily using his 
flux function. Assume that the shock is a l-shock (left running) to correspond with 
the computations presented in the previous section. The same arguments will apply 
to a right running shock. A schematic of discrete shock transition layer is shown in 
Fig. 7. We wish to find conditions that will guarantee that no noise will be 
generated in the downstream running wave families. Let Uy+ , = U,, the postshock 
state; then U; is the last internal zone of the shock. If no noise is generated, then 

i 1 \ 
UL 

:i :\I ,/ ,’ 
/ 8’ i’ 

‘\,, uR 

\ 

J-2 j-1 j j+1 

AF,,,, = o AF:+l,> = o 

FIG. 7. Schematic of the discrete shock transition layer. 
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the strengths of the downstream running waves must vanish, which means that in 
Eq. (81, 

a”‘#O, ack) = 0 for k# 1. 

This is equivalent to requiring that Uy and II:+ i are connected by a l-shock. Since 
this must continue to hold for all subsequent time, the internal shock zone U, must 
move smoothly along the shock curve (the Hugoniot curve of shock adiabatic for 
the full Euler equations) passing through U, until it reaches the postshock state. 

In the scalar case, the above restriction is automatically satisfied, since any state 
between U, and U, can be connected to the latter by a l-shock. There is no 
downstream running wave family in which any noise can appear, so the shock is 
well behaved. 

Consider the problem in state space. Let H(U; U,) = 0 be the equation of the 
shock curve passing through U,. Also, let V, be the gradient operator with respect 
to the state vector U. Using the flux function in the form Eq. (6), we may rewrite 
Eq. (5) in the form 

&J;=ui”+’ -UT= -$(dF,;,iZ+d~:_Ijz). (11) 

If UJ! lies on the shock curve, then H(U,“; U,) = 0, and we require 

V,H(U;; U,) . “Ui” = 0. 

This may be rewritten, using Eq. (1 1 ), as 

V,,H(U;; U,) . (AF,; ,:‘2 + dF,T ,;?) = 0. (12) 

This expression involves II;- , , and clearly leads to restrictions on the internal 
structure of the shock. Whether or not Eq. (12) is satisfied obviously depends upon 
the choice of the numerical flux function. 

It is easy to see that no shock with only a one zone transition may satisfy 
Eq. (12). Consider such a transition: let U,” be the internal zone of the discrete 
shock, and U;,, = U,, LJY-, = U,. There can be no right running waves at j + 5, 
no left running waves at j - $. Thus Eq. (12) becomes 

V,H(U;; U,) . (FR - FL) =O, (13) 

which from the jump relations dF = s dU gives 

V,.H(U,“;U,)qJ,-U,)=O, s # 0. (14) 

In other words the shock curve H=O must be everywhere tangent to UR-U,, 
which clearly is not true for a general nonlinear system of equations (including the 
isothermal and full Euler equations). Thus no one point unsteady shock profile 
exists in this case. This contrasts with the situation for steady shocks, for which 
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Godunov’s and Roe’s schemes do yield a one-parameter family of shocks with a 
single transition zone (because F, = F, and Eq. (13) is satisfied identically). We can 
also see that Colella and Woodward’s argument that Godunov’s scheme gives too 
narrow a shock is in a sense correct. 

Although Roe’s scheme was considered above, Eq. (12) applies as well to 
Godonov’s scheme with an exact Riemann solver, or to any approximate Riemann 
solver that is exact at a Rankine-Hugoniot jump. In fact, such a Riemann solver 
will exhibit the same behavior as Roe’s or Godunov’s schemes at a slow shock. For 
Osher’s scheme, the left and right states of the shock are connected by a compound 
simple wave path, and so U,” must lie on the l-simple wave passing through U,. 
In this case, the relation H = 0 should be taken to represent this l-simple wave, 
rather than the shock curve, and Eq. (12) still applies. The l-simple wave and the 
shock curve meet very smoothly at U,, with the same first and second derivatives. 
Near the postshock state, the difference between the two curves is thus quite small. 

We can see now why Osher’s scheme performs so much better than Roe’s or 
Godunov’s schemes at a slow shock. Osher evaluates Eq. (9) along a path r in state 
space that lies close to the shock curve. Because AF’ are evaluated along a path 
that so nearly satisfies H = 0, the internal states of the shock cannot deviate much 
from this path, and the amplitude of the noise in the downstream running waves 
remains very small. Note that it is not only Osher’s use of a differentiable flux 
function that leads to such good performance; his choice of wave path r is as 
important. 

- 
8.0 

RHO-U 

FIG. 8. Unsteady shock structure. Roe’s scheme. 
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To illustrate these points, the isothermal Euler equations (2) are considered, and 
the computed unsteady shock structure is examined. In Fig. 8, the evolution of the 
internal shock structure in the state space (p, p~)~ is shown for the first-order 
computation presented in Section 4. The solid line is the shock curve connecting the 
left and right states. The symbols show the evolution of the internal zone starting 
at U, and passing through the shock to U,. The path is smooth, but deviates 
considerably from H= 0 as it approaches the postshock state. The “knee” in the 
curve occurs after approximately 50 time steps, at which time the shock has 
completely crossed one cell. The large error in the postshock state is obvious, as is 
the subsequent oscillation behind the shock. These results are not significantly 
different from Godunov’s scheme (not shown). 

From Fig. 8 we can also see a direct geometric proof that a one-point shock 
transition cannot exist in general. If we have such a shock profile, the internal zone 
at time n must lie on the shock curve H = 0. The difference equation for this shock 
point may be written as “U;‘= --s dt/dx(U, - U,). Advancing to time level n + 1, 
the point must move parallel to U,--UL, which is the straight line between the 
endpoints of the shock curve in Fig. 8. It is immediately seen that this line is not 
tangent to H = 0, in general, so the point must move off the shock curve, i.e., 
Eq. (14) is not satisfied. 

In Fig. 9, the shock given by Osher’s scheme is presented. The compound wave 
path between the pre- and postshock states is shown and lies to the left of the shock 
curve. The shock is thicker with Osher’s scheme, so it takes longer for it to cross 

RHO-U 

FIG. 9. Unsteady shock structure, Osher’s scheme. 
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a cell. Note that the internal zone passes smoothly to the l-simple wave path and 
always lies between the simple wave path and the shock curve. 

Closer inspection of the results reveals that the intermediate states used in 
evaluating Osher’s flux function Eq. (10) tend to lie between the simple wave path 
and the shock curve in state space and hence remain close to the shock curve. By 
contrast, Roe’s approximate (as well as an exact) Riemann solver gives intermediate 
states that can lie quite far from the shock curve. Small changes in an internal state 
of the shock lead to relatively large changes in the solution of the Riemann problem, 
making dF* sensitive to small errors. Osher’s use of a differentiable flux function, 
in which the path integral Eq. (9) always includes the sonic state, as well as a choice 
of path that lies close to the shock curve, is the reason for its better performance 
here. 

To show the importance of the ordering of the wave paths in Osher’s scheme, 
a computation for Eq. (2) was performed in which the order of the paths was 
reversed. (This is intuitively the “correct” ordering, although in general the flux 
function is still multivalued in the physical space.) Results are shown in Fig. 10. The 
wave path now lies very far from the shock curve, and the deviation is greatest at 
the downstream side of the shock. At least one intermediate state in the evaluation 
of Eq. (10) lies on the l-simple wave curve to the right. Small changes in the 
internal shock states lead to larger changes in the intermediate states, so that the 

10.0 
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FIG. 10. Unsteady shock structure. Osher’s scheme, inverted wave path order. 
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dF* are more sensitive to errors. The Riemann invariants are shown in Fig. 11; 
note that the performance has degraded (although it is still better than Roe’s or 
Godunov’s schemes). 

The most important consequence of the error analyzed here occurs when higher 
order accuracy is obtained through the use of TVD flux limiters. Since the TVD 
property (which strictly applies only to scalar equations) depends upon the under- 
lying first-order accurate scheme being truly monotone, and because the error in 
this case is so smooth, the noise generated at the shock is preserved for longer 
distances downstream. Thus the problem is accentuated by the use of flux limiting. 

This point is illustrated in Fig. 12, in which a solution to Eq. (2) using Roe’s 
second-order accurate TVD scheme is shown. The “minmod” flux limiter was used. 
It is easily seen that noise in the downstream running wave family is now preserved 
for an even longer distance than in the first-order solution of Fig. 4. Note that the 
(In p-u/a) Riemann invariant is still monotone. Further illustrations of this 
behavior have been shown by Woodward and Colella [2], who clearly demonstrate 
how this can affect the global accuracy in unsteady calculations. 

As mentioned in the Introduction, the error analyzed here may be a contributing 
factor to the slow convergence to steady state seen by Lytton [7] and Yee [IS]. 
Both these researchers use higher order TVD schemes based on Roe’s approximate 
Riemann solver. In particular, Yee reports difficulty for steady state computations 
at Mach numbers ~4. It is worth noting that’she finds the convergence rate to be 
sensitive to the size of her “entropy enforcement parameter,” which is simply an 
artificial viscosity added at sonic points and shocks. Increasing the viscosity 
improves the convergence rate. Since this should increase the shock thickness and 
reduce the postshock error in the same way that Colella and Woodward’s [4] 
additional dissipation terms do, it is consistent with the error observed in this work. 
In two dimensions, one can speculate that the problem may be accentuated by 
shocks skew to the mesh lines and the nonlinearity of the flux limiters. These factors 
could result in shocks which never quite become steady. 

0.0 0.2 0.4 0.6 0.0 1.0 0.0 0.2 0.4 0.6 0.6 1.0 
z + 

FIG. 11. Isothermal Euler equations, Osher’s scheme, inverted wave path order. 
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FIG. 12. Isothermal Euler equations, Roe’s scheme using the “minmod” flux limiter. 

The results of this study also raise an interesting question concerning shock 
capturing schemes. The attractive property of an exact Riemann solver, or Roe’s 
approximate Riemann solver, is that they “recognize” shocks. That is, if two 
adjacent states satisfy the Rankine-Hugoniot conditions, they are treated as a 
shock. In practice, however, the numerical shock will have some thickness, so the 
flux function cannot “see” the whole of it. Osher’s approximate Riemann solver, on 
the other hand, never connects two states by a shock. As a result, the numerical 
shock is thicker, but at least for the cases shown here it is better behaved. It may 
be that there are some advantages to treating captured shocks using flux formulas 
that do not recognize the analytic shock jump conditions. The alternative is either 
to tolerate some postshock noise which may corrupt the solution in certain cases, 
or to add more numerical dissipation as Colella and Woodward suggest [4]. In the 
latter case, the shock resolution is degraded anyway. 

A final point must be made regarding a “fast” shock, where the eigenvalues do 
not change sign across the shock. In this case, the straight line between the left 
and right states in the state space is more nearly aligned with the shock curve 
connecting them. Hence the deviations between the internal shock states satisfying 
Eq. (12) and the actual states will be much smaller than for the slow shock case. In 
addition, any postshock noise will be of short wavelength and will be effectively 
damped by the dissipation of the scheme. 

6. CONCLUSIONS 

To summarize, there are two main conclusions to the present work. First, for 
slowly moving shocks, some flux difference splitting schemes yield significant error 
behind the shock. This noise cannot be eliminated by appealing to TVD concepts 
and may be a contributing factor to the slow convergence to steady state observed 
for such schemes. Second, this error can be explained in terms of the discrete shock 



158 THOMASW.ROBERTS 

structure of the particular scheme and suggests that numerical flux formulas that 
recognize a Rankine-Hugoniot jump may be less suitable for shock capturing than 
differentiable flux formulas, at least under certain conditions. 

APPENDIX A: EIGENVECTORS AND EIGENVALUES FOR ROE'S SCHEME 
FOR THE ISOTHERMAL EULER EQUATIONS 

For the isothermal Euler equations (2), Roe’s mean value Jacobian matrix is 
computed from the averages 

P = (PRPLP2? 

ii = P$, + PZ2U, 
plf+p2/2 . 

These are also the values of p and ii for the full Euler equations (3) (see Roe [S] ). 
The eigenvalues, right eigenvectors, and inner product of the left eigenvectors with 
AU are 

xc’) = 6 + a 3 f’2’ = d2’=;(Ap+~Au). 

It may be readily verified that these averages satisfy Eq. (7) and Roe’s “Proper- 
ty U.” 

APPENDIX B: EVALUATION OF THE PATH INTEGRAL IN OSHER'S SCHEME 
FOR THE &THERMAL EULER EQUATIONS 

The path integral Eq. (9) required for Osher’s scheme is easily evaluated for the 
isothermal Euler equations (2). From the left state UL a 2-simple wave is followed 
to an intermediate state U,, which is followed by a l-simple wave to U,. Both 
wave families are genuinely nonlinear. Thus there can be at most one change of sign 
of Lt2) = u + a between U, and U,. Similarly, A(‘) = u -a can change sign at no 
more than one point along the l-simple wave path from U, to U,. These two sonic 
points are called U,, and U,,,, respectively. The three intermediate states are all 
that are needed to evaluate the numerical flux function Eq. (10). 
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To compute US,,, U,, and U,,, the following relationships are used: along the 
2-simple wave, 

i’2) = u + a, &ill=,(ln~-~)=O; 

along the l-simple wave, 

where pref is some arbitrary reference density. 
With the above relations, the following values for the density and velocity at the 

intermediate states are found to be 

Ps.L=PLexp( -1-2); 
us.L = --a, 

u =~ln~+UR+UL 
r2p, 2’ 

P*R=PRex++~)t 

us, R = a. 

If we introduce the terms, 

gL = sgn(l’,2’), 

(i,.L = sgn(i\2’), 

oLR=sgn(A:")? 

CR = sgn(l"') R 1 

where the function sgn(.u) returns f 1 if x’ is positive or negative, respectively, then 
Osher’s flux formula (10) may be written 

E=t(F,+FL)-~C~,(F,-F.~..) 
+C',.(Fx,- F,) +al.,(F,- Fs,,) + a,(Fs,, -FL)]. 
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